IEEE Inertial Sensors & Systems Symposium 2018 Organizers

Symposium Chair:

Andrei Shkel, University of California, Irvine, United States

Technical Program Chair:

Giacomo Langfelder, Politecnico di Milano, Italy

Tutorials Chair:

Mike Larsen, Northrop Grumman, United States

Technical Program Committee:

Ryuta Araki, Sumitomo Precision Products Co., LTD, Japan Julien Auger, Safran Electronics & Defense, France Johannes Classen, Robert Bosch GmbH, Germany Luca Coronato, TDK-InvenSense Italy srl, Italy Barry Gallacher, Newcastle Unviersity, United Kingdom Joan Giner, GlobalFoundries, Singapore Randall Jaffe, L-3 Communications, United States Giacomo Langfelder. Politecnico di Milano. Italy Michael Larsen, Northrop Grumman, United States Olivier Le Traon, ONERA, France Kari Moran, SPAWAR Systems Center Pacific, United States Chris Painter, Apple Inc., United States Tommi Piirainen, Murata Electronics Oy, Finland Andrea Pizzarulli, Civitanavi Systems srl, Italy Igor Prikhodko, Analog Devices Inc., United States Doruk Senkal, InvenSense Inc., United States Diego Serrano, Panasonic, United States Rvan Supino, Honeywell, United States Alessandro Tocchio, ST Microelectronics Inc., Italy Alexander Trusov, Northrop Grumman, United States Takashiro Tsukamoto, Tohoku University, Japan Jae Yoong Cho, University of Michigan, USA Rong Zhang, Tsinghua University, China

Symposium Management:

Conference Catalysts, LLC, United States

Gold Patrons

Best Paper Award Patron

Media Patron

Exhibitors

Exhibits will be in the Varenna & Cernobbio. Opening at 8:00 AM, Tuesday, March 28 and closing at 4:00 PM, Wednesday, March 29.

Tutorials

Monday, March 26

08:30 - 10:30 System-Level Considerations in Inertial Sensor Performance Room: Bassanini

Instructor: Professor Michael Braasch, Ohio University

Abstract: Most inertial navigation systems operate at three basic task-rates: high-speed, medium-speed and low-speed. High-speed tasks include formation and compensation of the raw delta-Vs and delta-thetas. Medium-speed tasks include attitude determination and velocity update. Low-speed tasks include position update and gravity calculation. Most inertial sensor designers concentrate their efforts in the high-speed task arena. Once the measurements have been formed and compensated, they are sent off to the systems and software engineers. This tutorial provides an overview of those 'downstream' tasks and focuses particularly on the long-term impact of sensor errors on inertial navigation system performance. Key error characteristics such as the Schuler, Foucault and Diurnal oscillations will be discussed. Which is more important? Gyro bias or accel bias? The answer is that it depends on the length of the mission! We will go through the details as well as highlight the criticality of additional performance metrics such as scale factor error, noise, data rate and data latency.

11:00 – 13:00 Non-GPS Aiding of INS Room: Bassanini

Instructor: Professor Kai Bongs, University of Birmingham

Abstract: This tutorial will introduce atom interferometry for inertial sensing and for timekeeping. Atom interferometers have been first demonstrated 25 years ago and are now being developed in several places worldwide in to mobile systems with potential for real world applications. They offer precision measurements of rotation and acceleration. A key feature is the potential for operation with negligible drift and very linear scale factor. The tutorial will provide an overview of current developments and an outlook into future applications in navigation.

Tutorials

14:15 - 16:15 Modeling of offset and offset drift sources in AM/FM inertial sensors Room: Bassanini

Instructor: Dr.Alessandro Tocchio, STMicroelectronics

Abstract: This tutorial will focus on the main contributors affecting MEMS inertial sensors performance in terms of accuracy. This parameter is of paramount importance in order to enable new markets and applications such as augmented and mixed reality, pedestrian or indoor navigation, etc. In particular, starting from the basic working principles of MEMS AM gyroscopes and a MEMS AM accelerometer based on capacitive sensing technique, the main phenomena affecting Zero-rate Level (ZRL) and Zero-G offset (ZGO) accuracy will be introduced. The origins of these phenomena and how they influence both the mechanical and the electrical world will be tackled analytically, and the approaches used to simulate them will be described.

Invited Speakers

Tuesday, March 27 09:00 - 09:30 I1: Invited Talk Room: Bassanini

How high-volume MEMS device manufacturers can meet the requirements of different markets

Dr. Andrea Onetti, STMicroelectronics

Abstract:

ST was at the forefront in bringing MEMS technology to the high volume consumer market. Today the Internet of Things and Smart Driving trends are creating opportunities to make existing and new devices and applications smarter through the use of intelligent connected sensing technologies. This applies to factories and workplaces, cities, homes, vehicles and all the devices that can be found there.

The latest generations of MEMS products and technologies are developed to meet the needs of consumer applications while also targeting emerging automotive and industrial applications. Targeting different markets requires manufacturers to supply sensors with different characteristics but built on the same technology platforms. One key characteristic that differs by market is the accuracy the sensor is required to meet while another key characteristic is the combination of sensing functions that a device needs to have.

This talk will address how MEMS device manufacturers can meet the varied requirements of different markets while building on the high-volume manufacturing capabilities that are already in place for the consumer industry

Wednesday, March 28 09:00 - 09:30 I2: Invited Talk Room: Bassanini

Sub-femto-g free-fall with LISA Pathfinder

Stefano Vitale, University of Trento, Istituto Nazionale di Fisica Nucleare, and Agenzia Spaziale Italiana, Italy

Abstract:

The talk will briefly review the concept of a space-borne gravitational wave (GW) detector, and of its needs of pure inertial motion (geodesic motion) of reference test-masses. It will discuss then the sub-femto-g performance demonstrated by LISA Pathfinder, ESA's precursor to the LISA GW detector, and its impact on LISA and on the field of gravitational missions at large.

Invited Speakers

Wednesday, March 28 14:00 – 14:30 I3: Invited Talk Room: Bassanini

The Machine of Bohnenberger: Inertial Link between Astronomy, Navigation, and Geodesy

Jörg F. Wagner, University of Stuttgart

Abstract:

The "Machine of Bohnenberger" is considered to be the first gyro with cardanic suspension. As this apparatus forms the precursor of Foucault's Gyroscope of 1852, it rates as the ancestor of all gyroscopic instruments. Its inventor, Johann Gottlieb Friedrich Bohnenberger (1765-1831), was a professor of physics, mathematics, and astronomy at the University of Tübingen, Germany, as well as the scientific head-surveying officer of the early Kingdom of Württemberg. Being the direct counterpart of C.F. Gauß in south-west Germany, he made major contributions to introducing modern geodesy in Germany; and besides his Machine, he designed also other various physical instruments. The paper gives an overview over the initial dissemination and the further development of the Machine of Bohnenberger and outlines Bohnenberger's scientific work and life.

Thursday, March 29 09:00 - 09:30 I4: Invited Talk Room: Bassanini

HRG by SAFRAN, the game-changing technology

Fabrice Delhaye, Safran Electronics & Defense

Abstract:

Whereas the world inertial navigation community was wondering, for decades, if FOG would ultimately replace RLG, Safran is demonstrating with its HRG than technology prospective is not such easy game. With its HRG, Safran is proving that the HRG innovative approach is a real game changer in high end navigation. This paper sums up the overall principles of HRG, how it works and its intrinsic properties. Current applications of HRG are described to illustrate how HRG benefits are capitalized in valued-added products. More prospective aspects of the HRG are also addressed with the latest tests results of performance limits exploration.

07:00 - 16:00 Tutorial Registration Room: Bassanini Foyer

08:30 - 10:30 Tutorial 1: System-Level Considerations in Inertial Sensor Performance Instructor: Professor Michael Braach, *Ohio University* Room: Bassanini Session Chair: Michael Larsen, *Northrop Grumman, USA*

10:30 - 11:00 Coffee Break Room: Bassanini Foyer

11:00 – 13:00 Tutorial 2: Atom Interferometer Inertial Sensors Instructor: Professor Kai Bongs, University of Birmingham Room: Bassanini Session Chair: Michael Larsen, Northrop Grumman, USA

13:00 - 14:15 Lunch Room: Restaurant La Cascata

14:15 – 16:15 Tutorial 3: Modeling of offset and offset drift sources in AM/FM inertial sensors Instructor: Dr. Alessandro Tocchio Room: Bassanini Session Chair: Michael Larsen, Northrop Grumman, USA

18:00 - 20:00 Welcome Reception Room: Location to be announced

All attendees are invited to the Welcome Reception for drinks and light hors d'oeuvres.

08:00 - 18:00 Registration Room: Bassanini Foyer

08:45 - 09:15 Opening Remarks Andrei Shkel, 2018 General Chair Room: Bassanini Session Chair: Andrei Shkel, University of California, Irvine, USA

09:15 - 09:45 11: Invited Talk: Dr.Andrea Onetti, STMicroelectronics Room: Bassanini Session Chair: Andrei Shkel, University of California, Irvine, USA

How high-volume MEMS device manufacturers can meet the requirements of different markets Dr. Andrea Onetti STMicroelectronics

09:45 - 10:45 T1: Instrumentation, Calibration and Testing Room: Bassanini Session Chairs: Giacomo Langfelder, Politecnico di Milano, Italy Rong Zhang, Tsinghua University, China

Rate table improvements in rate stability using look-up tables André Niederberger, *Acutronic Switzerland Ltd., Switzerland*

A Micro Thermal and Stress Isolation Platform for Inertial Sensors Donguk Max Yang¹, Khalil Najafi¹, David Lemmerhirt², Jay Mitchell² The University of Michigan¹, USA; ePack, Inc., USA²

Calibration and simultaneous measurement of MEMS gyroscope

Mikulas Jandak, Honeywell International & TU Wien, Czech Republic

10:45 - 11:05 Exhibitors' Highlights Room: Varenna & Cernobbio Session Chair: Alessandro Tocchio, ST Microelectronics, Italy

11:05 - 11:30 Coffee Break & Exhibits Room: Varenna & Cernobbio

Tuesday, March 27

11:30 - 12:30 T2: INS, NAV-grade systems and AHRS Room: Bassanini Session Chairs: Michael Larsen, Northrop Grumman, USA Julien Auger, Safran Electronics & Defense, France

Compact Atomic Magnetometer for Global Navigation (NAV-CAM)

Michael Larsen, Michael Bulatowicz, Dennis Bevan, Philip Clark, Robert Griffith, Marta Luengo-Kovac, James Pavell Northrop Grumman, USA

FOG based INS for satellite launcher application

Daniele Grifi, Roberto Senatore, Enrico Quatraro, Massimo Verola and Andrea Pizzarulli *Civitanavi Systems, Italy*

Optimization of Gyroscope and Accelerometer/Magnetometer Portion of Basic Attitude and Heading Reference System

Simone Ludwig¹, Antonio Ř. Jimenez² North Dakota State University, USA¹; Jimenez Centre for Automation and Robotics. CSIC-UPM, Spain²

12:30 - 14:00 Lunch Room: Restaurant La Cascata

14:00 – 14:40 T3: Emerging Applications Room: Bassanini Session Chairs: Chris Painter, Apple Inc., USA Jae Yoong Cho, University of Michigan, USA

Monitoring Earthquake through MEMS Sensors (MEMS project) in the town of Acireale (Italy)

Antonino D'Alessandro, Salvatore Scudero, Giovanni Vitale, Roberto D'Anna, Luca Greco, Stefano Speciale, Giuseppe Passafiume Istituto Nazionale di Geofisica e Vulcanologia, Italy

Towards Self-Navigating Cars using MEMS IMU: Challenges and Opportunities

Igor Prikhodko, Brock Bearss, Carey Merritt, Charles Blackmer Analog Devices, USA

14:40 - 15:10 Lightning Round Presentations of the following Poster Session Room: Bassanini, Bellagio

Tuesday, March 27

15:10 - 17:00 P1: Gyroscopes and Resonators Room: Jasmine Foyer Session Chairs: Alessandro Tocchio, ST Microelectronics, Italy Tommi Piirainen, Murata Electronics Oy, Finland

This session will begin with "Lightning Round" Presentations (2 min X 16 posters) in Bassanini

P1-1: A dual-mass frequency-modulated (FM) pitch gyroscope: mechanical design and modelling

Valentina Zega¹, Claudia Comi¹, Patrick Fedeli¹, Attilio Frangi¹, Alberto Corigliano¹, Paolo Minotti¹, Giacomo Langfelder¹, Luca Falorni², Alessandro Tocchio² *Politecnico Milano, Italy*¹; STMicroelectronics, Italy²

P1-2: Quartz Cylindrical Resonators for Mid-Accuracy Coriolis Vibratory Gyroscopes

Mikhail Basarab¹, Boris Lunin², Evgeniy Chumankin³, Alexey Yurin¹ Bauman Moscow State Technical University, Russia¹; Moscow State University n. a. Lomonosov, Russia²; JSC ANPP TEMP-AVIA, Arzamas, Russia³

P1-3: Lateral Diffusion Doping of Epitaxial Silicon for Temperature Compensation of MEMS Resonators

Dongsuk D. Shin¹, David B. Heinz¹, Hyun-Keun Kwon¹, Yunhan Chen², Thomas Kenny¹ Stanford University, USA¹; Apple Incorporated, USA

P1-4: A control strategy for Coriolis and centrifugal effects reduction in an inertial system test equipment

Bernard Vau, Damien Ponceau, Mehdi Bussutil Ixblue, France

P1-5: A comprehensive model of beams' anisoelasticity in MEMS gyroscopes with focus on the effect of axial non-vertical etching

Mohammad Izadi¹, Francesco Braghin¹, Daniele Giannini¹, Damiano Milani¹, Ferruccio Resta¹, Matteo Brunetto², Luca Falorni², Gabriele Gattere², Luca Guerinoni², Carlo Valzasina² *Politecnico Milano, Italy*¹; *STMicroelectronics, Italy*²

P1-6: Theoretical model and experiments of glass reflow process in TGV for 3D waferlevel packaging

Yunbin Kuang, Jian Zhou, Wenyin Li, Hongjuan Cui National University of Defense Technology, P.R. China

P1-7: Virtually Rotated MEMS Whole Angle Gyroscope using Independently Controlled CW/CCW Oscillations

Takashiro Tsukamoto, Shuji Tanaka Tohoku University, Japan

P1-8: A system-level comparison of amplitude- vs frequency-modulation approaches exploited in low-power MEMS vibratory gyroscopes

Paolo Minotti¹, Giorgio Mussi¹, Giacomo Langfelder¹, Valentina Zega¹, Stefano Facchinetti², Alessandro Tocchio² *Politecnico Milano, Italy*¹; *STMicroelectronics, Italy*²

P1-9: Investigating the Impact of Resonant Cavity Design on Surface Acoustic Wave Gyroscope

Ashraf A Mahmoud, Mohamed Mahmoud, Tamal Mukherjee, Gianluca Piazza Carnegie Mellon University, USA

Tuesday, March 27

P1-10: The 4th Harmonic Angular Drift Error in MEMS Vibratory Rate Integrating Gyroscopes

Zhongxu Hu, Barry Gallacher Newcastle University, United Kingdom, Great Britain

P1-11: Resonance Frequency Control and Digital Correction for Capacitive MEMS Gyroscopes within electromechanical Bandpass Delta-Sigma-Modulators

Michael Maurer¹, Stefan Rombach¹, Yiannos Manoli² Hahn-Schickard, Germany¹; Hahn-Schickard & IMTEK University of Freiburg, Germany²

P1-12: Modeling of temperature frequency-compensation of doped silicon MEMS resonator

Payman Rajai¹, Matthew Straeten¹, Jiewen Liu¹, George Xereas², Mohammed Jalal Ahamed¹ University of Windsor, Canada¹;NXTSENS Microsystems Inc, Canada²

P1-13: Decoupled Rate and Quadrature Servos in a MEMS Gyroscope David Hayner Coherent Sensors, Inc., USA

P1-14: Predicting Height and Determining Mass of Foaming Agents for Glass Shell Resonatorsr

Bin Luo¹, Jintang Shang¹, Zhaoxi Su¹,Ching-Ping Wong² Southeast University, P.R. China¹;The Chinese University of Hong Kong, USA²

P1-15: Geometrical compensation of (100) single-crystal silicon mode-matched vibratory ring gyroscope

Shu Yunyi, Yoshikazu Hirai, Toshiyuki Tsuchiya, Osamu Tabata Kyoto University, Japan

P1-16: Adaptative Feedthrough Cancelation in MEMS Gyroscopes In Reconfigurable IC+FPGA Platform

Joan Giner¹, Kazuo Ono² GlobalFoundries, Singapore¹; Hitachi, Ltd., Japan²

17:00 - 18:00 Open Posters Room: Varenna & Cernobbio

All attendees are invited to the Open Poster Session for drinks and light hors d'oeuvres

08:00 - 17:00 Registration Room: Bassanini Foyer

09:00 - 09:10 Welcome Comments, Day 2 Andrei Shkel, 2018 General Chair Room: Bassanini Session Chair: Giacomo Langfelder, Politecnico di Milano, Italy

09:10 - 09:40 12: Invited Speaker: Stefano Vitale, University of Trento, Istituto Nazionale di Fisica Nucleare, and Agenzia Spaziale Italiana Room: Bassanini Session Chair: Giacomo Langfelder, Politecnico di Milano, Italy

Sub-femto-g free-fall with LISA Pathfinder Stefano Vitale University of Trento, Istituto Nazionale di Fisica Nucleare, and Agenzia Spaziale Italiana

09:40 - 10:40 T4: MEMS Accelerometers Room: Bassanini Session Chair: Diego Serrano, Panasonic, USA Takashiro Tsukamoto, Tohoku University, Japan

Single Resonator, Time-switched, low Offset Drift z-axis FM MEMS Accelerometer Cristiano Marra², Filippo Ferrari², Giacomo Langfelder², Francesco Rizzini¹, Alessandro Tocchio¹ ST Microelectronics¹; Politecnico di Milano, Italy²

High-Density Wide-Range Digital Accelerometer Arrays with High Detection Resolution Yemin Tang

University of Michigan Ann Arbor, USA

Electro-mechanical Chopping & Modulation of Acceleration: the Geometry-modulated Accelerometer

Cristiano Marra², Filippo Ferrari², Giacomo Langfelder², Francesco Rizzini¹, Alessandro Tocchio¹

ST Microelectronics1; Politecnico di Milano, Italy2

Wednesday, March 28

10:40 - 11:10 Lightning Round Presentations of the following Poster Session Room: Bassanini

The session will begin "Lightning Round" Presentations (2 min X 12 posters) in Bassanini

11:10 - 13:00 P2: Accelerometers, Magnetometers, IMUs Room: Bellagio Session Chair: Igor Prikhodko, Analog Devices Inc., USA Johannes Classen, Robert Bosch GmbH, Germany

**Session will include Poster Discussion, Coffee Break & Exhibit Inspection

P2-1: Automated tuning of Kalman Filters

Wojciech Straszewski, Magdalena Drozdz, Hendrik Wouters Fugro, The Netherlands

P2-2: Combined electronics and algorithm development for offset drift characterization in MEMS accelerometers

Federico Maspero¹, Victor Fernandez López-Rey², Loïc Joet³, Sébastien Hentz³, Giacomo Langfelder²

University of Grenoble & CEA-Leti, France; Politecnico di Milano, Italy; CEA-Leti, France

P2-3: Simulation methods for generating reduced order models of MEMS sensors with geometric nonlinear drive motion

Martin Putnik¹, Stefano Cardanobile¹, Mateusz Sniegucki¹, Steven Kehrberg¹, Matthias Kuehnel¹, Peter Degenfeld-Schonburg¹, Cristian Nagel², Jan Mehner³ Robert Bosch GmbH, Germany¹;Robert Bosch GmbH Renningen, Germany²;Technische Universität Chemnitz, Germany³

P2-4: Liquid Package Effects of Piezoresistive MEMS Accelerometer

Liu Xixiang¹,Libo Zhao¹ and Weile Jiang¹, Chen Jia¹,MingZhi Yu^{1, 2},Jiang Zhuangde² Xi'an Jiaotong University, P.R. China¹; State Key Laboratory for Manufacturing Systems Engineering, P.R. China²

P2-5: A Biologically-inspired Hair Accelerometer Based on Resonant Sensing Bo Yang

Southeast University, P.R. China

P2-6: A 27 μW MEMS Silicon Oscillating Accelerometer with 4- μg Bias Instability and 10- $\mu g/\sqrt{Hz}$ Noise Density

Xi Wang¹, Guo Ming Xia², Yang Zhao², Jian Zhao², An Ping Qiu², Yan Su², Yong Ping Xu³ China University of Mining and Technology & National University of Singapore, P.R. China¹; Nanjing University of Science and Technology, P.R. China²; National University of Singapore, Singapore³

P2-7: Attitude determination in dead reckoning navigation with reduced inertial support Yakov Binder

Concern CSRI Elektropribor, Russia

P2-8: High-precision inertial measurement unit IMU-5000

Wednesday, March 28

Yuri Korkishko, Vyacheslav Fedorov, Viktor Prilutskiy, Vladimir Ponomarev, Igor Fedorov, Sergey Kostritskii, Ivan Morev, Dmitriy Obuhovich, Stanislav Prilutskiy, Aleksandr Zuev and Vasiliy Varnakov *RPC Optolink, Russia*

P2-9: Experimental investigation of MEMS DRIE etching dimensional loss

Francesco Rizzini, Gabriele Gattere, Lorenzo Corso, Anna Alessandri, Francesco Tripodi, Ilaria Gelmi ST Microelectronics, Italy

P2-10: In-flight magnetometer calibration in the projectile frame Ronan Adam *French-German Research Institute of Saint-Louis, France*

P2-11: Modeling of a vibrating MEMS magnetometer partially covered with a ferromagnetic thin film

Thomas Perrier^{1, 2}, Raphaël Levy², Patrick Kayser², Béatrice Verlhac², Johan Moulin¹ University Paris Sud, France¹; ONERA, France²

P2-12: Auto-Zero Baseline Correction Circuit for MEMS Accelerometer Based Seismic Sensor

Panagiotis loakim, lasonas Triantis City University of London, United Kingdom (Great Britain)

13:00 - 14:30

Lunch Room: Restaurant La Cascata

14:30 – 15:00 I3: Invited Speaker: Joerg F. Wagner, University of Stuttgart, Germany Room: Bassanini Session Chair: Joan Griner, GlobalFoundries,Singapore

The Machine of Bohnenberger: Inertial Link between Astronomy, Navigation, and Geodesy

Jörg F. Wagner University of Stuttgart

15:00-15:40

T5: IMUs Room: Bassanini Session Chair: Joan Griner, GlobalFoundries,Singapore Ryan Supino, Honeywell, USA

Heteromagnetic Sensors Motion Parameters Of Moving Objects Aleksandr Skripkin TU - Saratov, Russia

Human Activity Recognition Method based on Inertial Sensor and Barometer Lili Xie, Jun Tian, Genming Ding, Qian Zhao *Fujitsu Research & Development Center Co., LTD, P.R. China*

15:40 - 16:10 Coffee Break & Exhibits Room: Varenna & Cernobbio

Wednesday, March 28

16:10 - 17:10 T6: High-precision Gyroscopes and Resonators Room: Bassanini Session Chair: Alexander Trusov, Northrop Grumman, USA Randall Jaffe, L-3 Communications, USA

Symmetric Piezoelectric CVG with Digital Control Anthony Challoner, Jeremy Popp, Peter Bond, Jose Beitia InertialWave Inc., USA

High quality factor MEMS gyroscope with whole angle mode of operation Mansoor Alam, Sina Askari, Mohammad H. Asadian, Andrei Shkel University of California Irvine, USA

Simulation-Based Approach for Fabrication of Micro-Shell Resonators with Controllable Stiffness and Mass Distribution

Behrouz Shiari, Tal Nagourney, Sajal Singh, Jae Yoong Cho, Khalil Najafi University of Michigan, USA

18:00 - 20:00 Banquet Dinner Room: Restaurant La Cascata 08:00 - 12:00 Registration Room: Basanini Foyer

09:00 – 09:30 Welcome Comments & Awards Ceremony, Day 3 Andrei Shkel, 2018 General Chair Room: Bassanini Session Chairs: Michael Larsen, Northrop Grumman, USA

09:30 – 10:00 I4: Invited Talk: Fabrice Delhaye, Safran Electronics & Defense Room: Jasmine 2 Session Chair: Andrei Shkel, University of California, Irvine, USA

HRG by SAFRAN, the game-changing technology Fabrice Delhaye Safran Electronics & Defense

10:00 - 11:00 T7: Fabrication, Phenomena and Modeling Room: Bassanini Session Chair: Olivier Le Traon, ONERA, France Luca Coronato, TDK-InvenSense Italy srl, Italy

Investigation on precise frequency trimming of a micro shell resonator with T-shape masses using low-power femtosecond laser ablation

Kun Lu, Yan Shi, Dingbang Xiao, Zhanqiang Hou, Wei Li, Xuezhong Wu , Yulie Wu National University of Defense Technology, P.R. China

Suppression of the resonance of vacuum-sealed accelerometers: a comparison of two different strategies

Bruno Fain, Frédéric Souchon, Audrey Berthelot, Romain Anciant, Philippe Robert, Guillaume Jourdan *CEA-LETI, France*

A novel compensation method of damping asymmetry based on piezoelectric electrodes for cylindrical resonators

Jiangkun Sun, Yulie Wu, Xiang Xi, Yongmeng Zhang, Xuezhong Wu, Luozhen Qu National University of Defense Technology, P.R. China

11:30 - 12:45 Late News 1 Room: Bassanini Session Chair: Barry Gallacher, Newcastle University, UK Andrea Pizzarulli, Civitanavi Systems srl, Italy

Nuclear Magnetic Resonance Gyroscope (NMRG)

Michael Larsen¹, Dennis Bevan¹, James Pavell¹, Marta Luengo-Kovac¹, Michael Bulatowicz¹, Philip Clark¹, Robert Griffith¹, Julia Flicker¹, Ashely Rothballer¹, Daryl Sakaida¹, Gordon Morrison², Juan Campero², Elliot Burke², Steven Estrella², Brian Ehrsam² Northrop Grumman, USA¹; Freedom Photonics, USA²

200mm High Performance Inertial Sensor Manufacturing Process Stephane Martel¹, Francois Dion¹, Jeffrey DeNatale² *Teledyne DALSA Semiconductor, Canada¹; Teledyne Scientific Company, USA*²

Active Temperature Compensation of Thermal Accelerometer for Improved Stability Kirsten Kaplan, Martin Winterkorn, Camille Everhart, Dongsuk D. Shin, Gary O'Brien, Fritz Prinz, Thomas Kenny Stanford University, USA

Effect of Fabrication Imperfections on Energy Loss through Mechanical Mode Coupling Daryosh Vatanparvar, Andrei M. Shkel University of California, Irvine, United States

Shock behaviour of gyroscope based on gas thermal expansion

Guillaume Kock, Philippe Combette, Benoit Charlot, Alain Giani University of Montpellier & Institute of Electronics & Systems (IES), France

12:45 - 13:00 Closing Remarks Andrei Shkel, 2018 General Chair Room: Bassanini Session Chair: Andrei Shkel, University of California, Irvine, USA

14:30 – 17:15 Lake Como Boat Tour Room: Bassanini

**More information to be announced